Polyhalogenated aminobenzonitriles vs their co-crystals with 18-crown-6: amino group position as a tool to control crystal packing and solid-state fluorescence
logo nioch.ru


N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
of Siberian Branch of Russian Academy of Sciences

The article with participation of NIOCh's researchers is published in  CrystEngComm  (IF 3,545

Polyhalogenated aminobenzonitriles vs their co-crystals with 18-crown-6: amino group position as a tool to control crystal packing and solid-state fluorescence

Tamara A. Vaganova, Enrico Benassi, Yurij V. Gatilov, Igor P. Chuikov, Denis P. Pishchur and Evgenij V. Malykhin

CrystEngComm, 2022, 24(5), 987-1001,

First published 20 Dec 2021


 https://doi.org/10.1039/D1CE01469B

CrysrEngCom_2021_Vaganova.gif

 

Abstract

A series of para- and ortho-aminobenzonitriles differing in the nature and number of halogen substituents were used to synthesize 2:1 co-crystals with 18-crown-6 ether. The supramolecular structure of the obtained co-crystals as well as aminobenzonitrile crystals was studied in detail using single-crystal X-ray diffraction. Incorporation of the crown ether into the crystal matrix of arylamine results in the replacement of the H-bonds between amine molecules (N–H⋯N[triple bond, length as m-dash]C and N–H⋯F) by the bond with a crown oxygen atom (N–H⋯Ocr). The crystal packing rearrangement modifies the π-electron interactions between aminobenzonitrile molecules both in the type of contact (C–F⋯π, C–Cl⋯π, C[triple bond, length as m-dash]N⋯π, π⋯π) and mutual arrangement of the stacked molecules (parallel/anti-parallel, displaced/rotated). These transformations cause a change in the solid-state fluorescence characteristics of aminobenzonitriles: co-crystallization is accompanied by a bathochromic shift of the fluorescence maximum in the case of para-isomers and by a hypsochromic shift in the case of ortho-isomers; the magnitude of this effect depends on the number of halogen substituents. Exploration of the nature of the intra- and intermolecular interactions, along with the excited states of the molecules in the gas phase, in aminobenzonitrile crystals and their co-crystals, using state-of-the-art TD-DFT calculations evidences that, depending on the NH2 group position, insertion of the crown ether causes either an increase in the change of the dipole moment upon photo excitation/emission with a subsequent increase in the Stokes shifts (para-aminobenzonitriles) or a decrease in these characteristics (ortho-aminobenzonitriles). This is consistent with the strengthening or weakening of π-electron aggregation in pairs of para- or ortho-aminobenzonitrile molecules, respectively, upon co-crystallization. A quantitative model that can clearly distinguish the different behaviours of ortho- and para-substituted molecules and provides an analytical tool of wide-ranging validity was proposed. The central importance of the mutual arrangement of the functions playing the role of the H-bond donor and acceptor was established; this finding may be exploited as a design tool to purposefully modify the molecular packing and tune the solid-state photophysical properties. Using DSC, the co-crystals' structure was found to self-organize in the same way upon crystallization from solution and from the melt and to regenerate in the melting–crystallization cycle.

Альметрики: 


Метрики PlumX теперь доступны в Scopus: узнайте, как другие ученые используют ваши исследования