Органический прорыв сибирских ученых
nioch.ru

Федеральное государственное бюджетное учреждение науки
Новосибирский институт органической химии им. Н.Н. Ворожцова
Это старая версия сайта! Новый сайт https://web3.nioch.nsc.ru/nioch/

Технический прогресс  продолжает набирать обороты. Совсем скоро в нашей реальности появятся  тонкие и лёгкие планшеты, сворачивающиеся в трубочку, как бумажный лист, а подзарядить их можно будет от собственной кепки или куртки, поверхность которых станет представлять собой одновременно и солнечную батарею. 


Учёные из Института химической кинетики и горения им. В. В. Воеводского СО РАН занимаются разработкой и синтезом органических полупроводников на основе антратиофенов, перспективных для органической электроники. 


Антратиофены — это полиароматические соединения, представляющие собой молекулы бензола, сцепленные с молекулами тиофена. Антратиофены в природе встречаются крайне редко, существует буквально несколько упоминаний в научных статьях о том, что их находили в составе некоторых растений. В основном это полностью синтетические продукты, и они представляют собой перспективные соединения для органической электроники — в частности их можно использовать как полупроводники.

«Мы привыкли, что вся органика — это диэлектрики. Возьмём обычный провод. Его основная медная или алюминиевая часть покрыта полимером — он служит изолятором. Однако современная химия позволяет синтезировать такие органические вещества, которые сами могут быть проводниками или полупроводниками», — рассказывает научный сотрудник ИХКГ СО РАН кандидат химических наук Денис Сергеевич Баранов.

Неорганические полупроводники отличаются от органических, как стеклянная бутылка от пластиковой. Стекло можно разбить, а пластик пластичный, мягкий, прочнее, легче, практичнее. К тому же его довольно просто получать из доступных материалов. «Представляете, что ваш телефон можно будет спокойно согнуть в трубочку? А теперь представьте его в 10 раз легче, ещё тоньше, энергосберегающим. Это всё может дать и уже даёт органическая электроника. Нам известны батарейки, диоды, транзисторы на органической основе. Я видел пример устройств, которые можно растянуть, как резину. Это технологии уже даже не ближайшего будущего, а настоящего», — продолжает учёный.

Есть ряд ограничений, которые не позволят полностью заместить неорганические полупроводники органическими. Во-первых, потому что различаются сами фундаментальные характеристики материалов (так иногда стекло всё-таки предпочтительнее пластика). Во-вторых, сейчас органические материалы имеют проблемы с устойчивостью — большинство из них легко деградируют, разрушаются. Эта проблема ещё не решена. Для агрессивных сред —  например, космоса — органическая электроника пока не подходит.



Антратиофены являются гетероаналогами пентацена — одного из наиболее известных органических полупроводников. Они имеют схожие с ним свойства, но при этом более устойчивы к деградации. При этом молекулу антратиофена можно модифицировать, то есть изменять нужным для тех или иных целей образом.

«Наша работа заключается в том, чтобы сделать новые вещества этого ряда, проверить их свойства и сравнить, как же структурные изменения эти свойства меняют. Станут ли антратиофены лучшими проводниками, будут ли ещё более устойчивыми, получится ли сделать их растворимыми? Последнее необходимо, чтобы органическую электронику можно было печатать на 3D принтере», — говорит Денис Баранов.

К синтезу антратиофенов лаборатория пришла отчасти случайно. «Раньше я занимался химией ацетиленовых производных антрахинона, — рассказывает Денис. — У нас был блок исследований, посвященных ряду реакций, позволяющих из этих веществ получать в том числе и антратиофены. Это было чисто фундаментальное исследование, мы изучали саму реакцию, потому что до нас таким образом антратиофены никто не получал. А потом мы увидели, что к этим продуктам имеется очень большой прикладной интерес. Через определённое время нам пришла мысль развивать свою химию в приложении к органической электронике. Теперь мы пытаемся использовать нашу реакцию в синтезе уже перспективных с этой точки зрения материалов.

Имея ввиду пока ещё гипотетическое производство, учёные стараются применять для получения антратиофенов весьма доступные материалы и исключить использование дорогостоящих реактивов. Исходные соединения, такие как антрахинон, производное антрацена, вообще можно получать из угля, в котором у России недостатка нет.

На сегодняшний день органическая электроника — отрасль молодая, сложная и требует квалифицированных специалистов (химиков, физиков, «органических» электронщиков) и очень много дорогостоящих приборов. В Новосибирске ею занимаются только лаборатория в ИХКГ СО РАН и группа под руководством  кандидата химических наук Евгения Алексеевича Мостовича в Новосибирском институте органической химии им. Н. Н. Ворожцова СО РАН, также создаётся коллектив в Новосибирском государственном университете. Несмотря на то, что направление поддерживается различными грантами, пока чувствуется нехватка специалистов и оборудования. Гораздо быстрее и эффективнее органическая электроника сейчас развивается за рубежом.  

«Перегнать сразу по всему фронту исследований нам уже не удастся, но в некоторых направлениях мы сильны, и их можно развивать, — говорит Денис Баранов. —  Эта химия сложная и специфическая, существует очень мало методов, позволяющих работать с такими соединениями. А мы научились это делать,  у нас получается, и мы хотим двигаться дальше и разработать блок подходов, который позволял бы нам получать похожие вещества с различными заместителями. Здесь  мы можем занять свою нишу».

Диана Хомякова



Источники

Органический прорыв
- Наука в Сибири (sbras.info), 12/09/2017
Новосибирские ученые создают органические полупроводники - для электроники XXI века
- РИА Сибирь (ria-sibir.ru), 13/09/2017
Новосибирские ученые создают органические полупроводники - для электроники XXI века
- ИА МАНГАЗЕЯ (mngz.ru), 13/09/2017
Новосибирские ученые создают органические полупроводники - для электроники XXI века
- Vestisibiri.ru, 13/09/2017
Органическая электроника
- Академгородок (academcity.org), 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- Cokrat.ru, 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- Margust (gazeta-margust.ru), 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- Новости обо всем (newsae.ru), 13/09/2017
Ученые нашли уязвимость перспективных полупроводников в области наноэлектроники
- 1nnc.net, 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- События дня (inforu.news), 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- Новости@Rambler.ru, 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- ТАСС, 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- News.hi.ru, 13/09/2017
Ученые обнаружили уязвимость перспективных полупроводников в сфере наноэлектроники
- Спутник Новости (news.sputnik.ru), 13/09/2017
Новосибирские ученые создают органические полупроводники - для электроники XXI века
- Монависта (novosibirsk.monavista.ru), 14/09/2017
Учеными доказана уязвимость перспективных полупроводников
- Агентство по инновациям и развитию (innoros.ru), 16/09/2017

Актуальные новости

13-01-2023

Категория: семинары НИОХ СО РАН

Семинар Отдела медицинской химии № 1, 25.01.2023 г. в 15-00 Доклад по диссертационной работе Решетникова Д. В.