
J-АГРЕГИРОВАННЫЕ ПЛЕНКИ ЦИАНИНОВЫХ КРАСИТЕЛЕЙ
Описание
J-агрегаты цианиновых красителей привлекают внимание исследователей из-за их высокой эффективности в процессах переноса энергии возбуждения в молекулярных гетерогенных системах. Особенностью J-агрегации является образование в таких супрамолекулярных структурах узкого интенсивного пика поглощения - J-пика, батохромно сдвинутого относительно поглощения мономерной формы красителя.
Красителями, эффективно образующими молекулярные агрегаты в водных растворах, являются цианиновые красители, наиболее известный из которых - 1,1'-диэтил-2,2'-хиноцианин (псевдоизоцианин, pseudoisocyanine - PIC). J-Агрегаты PIC образуются в водных растворах, в замороженных стеклах из воды и этиленгликоля. Однако методы формирования J-агрегатов в водном растворе или в замороженных стеклах не дают устойчивые воспроизводимые образцы, что препятствует их применению как оптических или нелинейно-оптических материалов. Для исследования и применения нелинейных оптических свойств J-агрегатов необходимо иметь твердые, стабильные и воспроизводимые образцы.
В Новосибирском институте органической химии разработан метод получения стабильных твердых нанометровых пленок J-агрегатов PIC высокого оптического качества, как в чистом виде, так и в полимерных матрицах и исследованы их оптические, термических и нелинейно-оптические свойства.
Впервые получены образцы стабильных нанометровых пленок J- агрегатов PIC с контролируемой шириной поглощения молекулярного экситона.
![]() |
![]() |
|
Метод получения J - агрегатов в тонких пленках |
Структура агрегата с узкой экситонной линией |
|
Область использования J-Агрегаты рассматривают как эффективные нелинейно-оптические среды. Перспективы применения нелинейно-оптических материалов с кубической нелинейностью связывают с созданием сверхбыстрых оптических переключающих устройств для следующего поколения телекоммуникационных систем и систем оптической параллельной обработки сигналов со временем переключения пикосекунды или сотни фемтосекунд. |
![]() |
|
|
Вид пленок и спектра экситонного поглощения J-агрегата |
Преимущества
Уникальное сочетание большой величины нелинейности |χ(3)| ~ 10-5 ед. СГС со сверхбыстрым (~300 фс) временем релаксации делает наноразмерные J-агрегаты цианиновых красителей перспективными для приложений в области фотоники.
Четыре ключевых момента определяют перспективность применения J-агрегированных пленок циангиновых красителей в качестве нелинейных оптических переключателей:
- использование сверхкоротких (<1 пс) импульсов света возбуждения
- наличие высоких значений нелинейного просветления и нелинейной рефракции в J-агрегатах
- реализация быстрого времени релаксации (<1 пс) нелинейного отклика J-агрегатов
- доступность получения пленок оптического качества на большой площади
Коммерческое предложение
Агрегированные пленки могут быть получены в количестве от десятков до сотен экспериментальных образцов на стеклянных подложках размером 2.5х2.5 см. Стоимость пленочного образца договорная в зависимости от типа красителя от 300 руб. и выше.
630090, г. Новосибирск, 90, просп. Академика Лаврентьева, 9
Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
Тел.: (383) 330-89-96 Шелковников Владимир Владимирович, зав. лабораторией, д.х.н.
Факс: 8(383) 330-97-52 E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.








В Новосибирском институте органической химии СО РАН разработаны оригинальные спиновые зонды нового типа - производные нитроксильных радикалов имидазолина и имидазолидина, обладающие чувствительным к изменению рН среды спектром ЭПР (Рис.).
Эти соединения широко используются в биофизических и биомедицинских исследованиях, а также для изучения полиэлектролитов, цеолитов и гетерофазных систем. С помощью ЭПР спектроскопии рН-чувствительных спиновых зондов можно проводить измерения рН в непрозрачных средах и даже в живых организмах invivo. Разработаны методы синтеза широкого набора спиновых зондов, позволяющих проводить измерения в диапазоне рН 0 - 14 с точностью до 0,05 единиц рН.
Для получения имидазолиновых НР были разработаны специальные методы, позволившие получить большое число разнообразных производных НР этого ряда с различными функциональными группами, придающими этим НР необходимые физические и химические свойства и обеспечивающие достижение желаемых спектральных характеристик. Один из наиболее впечатляющих примеров, раскрывающих возможности новых методов синтеза – стабильные имидазолиновые НР с нетрадиционным окружением радикального центра. Метод синтеза этих соединений основан на окислительной активации нитронной группы в составе гетероцикла с последующим присоединением нуклеофильного агента. Получен целый ряд НР с алкокси-, амино- группами или атомом фтора у α-атома углерода нитроксильной группы, отличающихся по своим свойствам от обычных тетраалкил-замещённых НР.
При введении в положение 4 гетероцикла функциональной группы, способной к координации, имидазолиновые НР становятся эффективными хелатирующи-ми агентами, поскольку атом азота имино-группы или атом кислорода нитронной группы могут участвовать в образовании координационных соединений с ионами металлов. При этом в хелатных комплексах с парамагнитными ионами металлов наблюдаются сильные обменные взаимо-действия. Такие комплексы послужили основой для создания нового семейства ферромагнитных материалов.
Неподелённая пара электронов у атома азота N-3 в НР 3-имидазолина и имидазолидина придаёт этим НР основный характер. Обратимое протонирование по этому основному центру, находящемуся в непосредственной близости к нитро-ксильной группе, вызывает заметные изменения в спектре ЭПР. Это явление лежит в основе оригинального метода определения рН среды, разработанного с участием НИОХ. Имидазолиновые и имидазолидиновые НР – наилучшие рН-чувствительные спиновые зонды. Полученные на основе имидазолиновых НР спиновые зонды позволяют проводить измерения рН в диапазоне 0-14 с точностью до 0.05 единицы pH. НР с рН-зависимым спектром ЭПР были успешно использованы для измерения локального рН и изучения процессов, связанных с транспортом протонов в различных системах, в том числе в биологических объектах и в гетерогенных материалах органической и неорганической природы.
Например, они применяются для изучения трансмембранного транспорта, измерения поверхностного потенциала мембран и белковых молекул, оценки эффективности систем доставки лекарственных средств в организме, контроль изменений рН в непрозрачных (гетерогенных) средах, например, в эмульсиях, исследованиях свойств поверх-ностей полиэлектролитов, определения кислотности в мезопорах цеолитов, и т.д.







